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Periodic Behavior of Cellular Automata 
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I propose an explanation of the observation of a globally synchronized behavior 
of deterministic cellular automata and coupled map lattices, together with local 
fluctuations. 
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In this note I present a qualitative explanation of a striking observation by 
Chat6 and Manneville, (1) confirmed by others, (2) that it is possible for some 
deterministic cellular automata  (CA) to have on average  a periodic 
behavior. This phenomenon is remarkable for a number of reasons. First, 
it is not intuitive at all that CA with a discrete phase space can mimick so 
closely continuous systems. Furthermore,  arguments have been presented (3/ 
tending to show that CA cannot have such a periodic behavior on average, 
together with small-scale thermal noise. As this relies upon a nucleation 
mechanism, one may argue that there a periodic behavior (as seen in refs. 1 
and 2) is only a transient phenomenon, although the behavior for very long 
times should be different (as predicted by ref. 3), but never reached in 
actual computations that are not long enough. This is very unlikely for two 
reasons: first, the periodic behavior is reached from random initial condi- 
tions, and one does not see why random initial conditions would reach a 
metastable state instead of a stable one; then these CA are defined without 
any real parameter, everything there is of order 1, so a kind of conspiracy 
is needed to produce very large transient times. This could happen for one 
specific rule, but becomes completely unlikely when one realizes that the 
same has been observed now for four or five CA without any obvious 
resemblance: for instance, some are on a 3D lattice, others on 4D and 5D 
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lattices. As far as I know, the matter is not yet settled, and thepresent  note 
aims at showing that this phenomenon can be reasonably explained by 
simple arguments. 

For  this I propose to see these CA on a mesoscale, replacing then the 
iteration of discrete variables by an iteration of continuous quantities (=  a 
coupled map lattice) that can be seen as obtained from the CA by local 
averaging (as done when deriving fluid mechanics for lattice gases, for 
instance). That is to say that CA share the properties of coupled map 
lattices, something in full agreement with the property that coupled map 
lattices may have also a macroscopic periodic behavior together with 
random fluctuations on a microscale. The core of the argument is as 
follows: Let si(t+ 1)=F[si(t)] be a set of uncoupled maps on a lattice 
where the position index is i, although the discrete time is t. The function 
F [ .  ] of the real variable s is rather arbitrary at the moment, and could be 
the familiar quadratic map. As is well known, (4) there are possible choices 
of this function F [ .  ] such that the iteration yields a random result, such 
as the map 4s(1 - s )  with s between 0 and 1. If one considers the class of 
quadratic maps F[s] = 4 2 s ( 1 -  s), where 2 is a real parameter less than 1, 
there are values of 2 for which the iterated maps is random, but has never- 
theless a "window" structure. For instance, in the period-three window, 
three intervals exist, all included in ]0, 1 [ and denoted as I1, I2, 13, such 
that if s(t) is inside I1, then s(t + 1) is inside I2, s(t + 2) in /3, s(t+ 3) in 
11 again, and so on. Consider now the iteration of this lattice of uncoupled 
maps for a value of 2 such that every map at a vertex of the lattice is in 
the same interval at the same time, but having a random value within this 
interval. Consider now the lattice average S(t) = (I /N) = (I /N) Z i  si(t), 
where the sum Zi  extends over N vertices, N large. Because of the averaging, 
this sum will show a periodic behavior in time, with random Gaussian 
fluctuations of amplitude N - m  in the large-N limit. This is what was 
observed by Chat6 and Manneville. It is crucial to notice at this point that 
the Gaussian fluctuations result from the central limit theorem, and this 
does not imply that the fluctuation of an individual si is Gaussian at all: 
in particular the fluctuation of si are strictly bounded. The next step in the 
reasoning is to assume now that the maps are coupled, that is, one replaces 
the map s~(t+ 1)=F[s~(t)] by 

s~(t+l)=F[s~(t)]+t 1 ~ sj(t) 
j f f nn  

where the sum is now on the nearest neighbors of i, and where t/ is a 
coupling constant. Take t/ very small. Then the "interaction" term in the 
coupled iteration will be uniformly small at any time, and so one can guess 
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that the period three will remain stable: this interaction will be too weak 
to make a particular vertex miss one phase in the succession of intervals 
I j , / 2 , / 3 ,  I1, I2,... in the course of time: these intervals being disconnected, 
a finite kick is needed to jump from one interval to another one. This is 
basically how I explain that CA can have a random behavior on a micro- 
scale and a coherent periodic behavior on average. This explanation leaves 
open a certain number of questions that I now consider: 

1. I supposed that the initial conditions are such that the automaton 
is synchronized: every vertex is in the same interval Ik, k = 1, 2, or 3, at 
time 0. As I said before, the periodic state is attained from much more 
general random initial conditions, most likely with vertices distributed 
evenly among the three intervals. Actually, one can imagine that the inter- 
action is strong enough to put all the vertices in the same state after tran- 
sients, but weak enough to keep them afterward in the same state. This is 
possible, because one may argue that the actual amplitude of the interac- 
tion term depends numerically on whether a given vertex and its neighbors 
are all in the same state (then the interaction would have to be small 
enough to forbid an out-of-phase jump, once the synchronization of the 
intervals has taken place) or in a different state (then it has to be strong 
enough to allow the jump to a global synchronized state). This could be 
made more rigorous by assuming that the width of the intervals Ik is much 
less than their mutual distance: then the noise resulting from an out-of- 
phase neighbor would be much larger than the one coming from the 
fluctuations inside the intervals I k. The dynamics of the transients is also 
an interesting question. It is well possible that the domain walls between 
domains of a different phase move in a definite direction so that the whole 
automaton gets into a single time phase at the end. 

2. It is of interest to understand the source of the difference between 
fluctuations in equilibrium systems and nonequilibrium ones as considered 
here. The crucial point is, as I discussed, the fact that, in out-of-equilibrium 
systems, fluctuations may have a strictly bounded amplitude, although they 
are unbounded in equilibrium systems, even though the large excursions 
are very unlikely in general. To have a model in mind, one could think 
of a system of Dulling oscillators coupled on a lattice. Let Xi(t) be the 
coordinate at the site i and time t. The equations of motion for this system 
are given by 

d2Xi(t) 
dt 2 -Xi( t)[1-X~(t)]+q Z Xj(t) 

j ~ n n  

In the absence of coupling (q = O) this is integrable in terms of elliptic 
functions, and the energy of each oscillator is conserved. Suppose that this 
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energy is low enough to keep the system in one of the energy wells either 
near X = + 1 or - 1 .  When uncoupled to its neighbors, a Duffing oscillator 
will never jump to the other well once it started inside one well. On the 
contrary, if it is coupled, however weakly, to the neighbors (q not zero but 
small), it will have a chance in the course of time to gather the energy of 
a large number of neighbors and then jump to the other side of the poten- 
tial well, if one assumes this system to be ergodic. This emphasizes that 
mechanical systems may have much larger fluctuations than CA, because of 
the conservation of energy. 
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